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Abstract 
 
The fundamental objectives of this work are to use modern machine learning techniques to (1) 
develop new algorithms for both prescreening and object discrimination to support the HMDS 
program; (2) assess the utility of information-theoretic approaches that we have been developing 
for other sponsors for consideration by the various NVESD programs, particularly the incoming 
forward looking and handheld programs; (3) develop algorithms for any other sensors of interest 
to the sponsor and assess their performance.  Historically, algorithm development work has 
included downward and forward looking GPR, IR, hyperspectral, acoustic, seismic, EMI, and 
video sensing modalities.  For HMDS we have been carefully considering robustness issues with 
respect to target localization for feature extraction, modifying one of our previously developed 
prescreeners, and investigating convolutional neural networks as a new potentially effective 
processing algorithm.  We work closely with other groups, including the system developer 
supported on these efforts, to insure both collaborative algorithm development (algorithm fusion) 
and technology transfer.  In particular, we are actively leading an effort to generate a journal 
article submission that discusses the recent “bake off” blind test results (this journal paper has 
been returned with revisions).  We also include some of our FLGPR work in this report.   
 
Technical Progress 
 
We present several areas of technical progress that were achieved over the course of this project 
and one area of related research that is relevant to a program being transitioned to a sponsor.  We 
have previously transitioned a prescreener called HOG for the HMDS system to the government 
and the sensor developer.  We have also  continued to transition our algorithms that we 
developed for localizing the areas of interest in GPR imagery, and have worked with the other 
developers to share code and output files.  We also have investigated a new algorithm to the area 
of landmine detection – convolutional neural nets.  Algorithmic development efforts are 
described below.  We also describe some related work in forward looking radar since that work 
will be transitioning to the sponsor. 
 
A new feature descriptor, and discrimination algorithm, for downward-looking ground 
penetrating radar (GPR) 

 



A large body of published research has focused on developing algorithms that automatically detect buried 
threats in GPR data. Most contemporary algorithms consist of two steps: a feature extractor, and a 
machine learning classifier.   The feature extraction step attempts to make a succinct encoding of the 
original GPR data that retains all information relevant to discriminating between threats and non-threats, 
while suppressing any other variations in the data (i.e., noise).    Machine learning algorithms are then 
trained to discriminate between threats and non-threats based upon the feature values computed on the 
GPR data (and corresponding spatial location) under consideration.  Machine learning is a mature area of 
research, which has produced a large number of effective learning algorithms.  Therefore, much of recent 
research for GPR buried threat detection (BTD) has been focused on the development of more effective 
features, which can result in substantial performance improvements.    
 
Many existing GPR BTD algorithms operate on relatively small images extracted from larger GPR 
volumes, or B-scans (i.e., large images formed from GPR data).  An example of such an image is shown 
below.  Two particularly successful recent examples of GPR features operating on this type of imagery 
are Histogram of Oriented gradients (HOG) and the Edge Histogram Descriptors (EHD).  The motivation 
for both HOG and EHD is to encode shape information within the GPR imagery, such as the dominant 
orientation of image gradients within smaller sub-regions, often called “pooling regions” within the GPR 
imagery.  The pooling regions used for EHD, as applied to a GPR image, are illustrated below. 
 
In our recent work we analyzed the weaknesses of the EHD and HOG features.  Our analysis is 
summarized in images (b)-(d) below. These images are each an EHD feature obtained by averaging the 
values of EHD features extracted across three populations of GPR imagery, respectively:  easy threats, 
difficulty threats, and non-threats.  Easy buried threats are those that EHD-based algorithms can identify 
without making many, or any, false detections.  Any improvements in detection performance therefore are 
unlikely to come from increased detection performance on these threats.  Therefore, we focus our analysis 
on the identification of difficult threats, which are those that are frequently confused with non-threats.  
Notice that the vertical gradients (top row) within the Non-threat (b) and the Difficult threat (d) EHD 
feature averages have a high magnitude, and are very similar.  Ideally our feature descriptor would 
suppress image content which causes threats and non-threats to appear similarly, and emphasize content 
that differentiates them.   



 
Based on our findings with EHD through numerous experiments (which are summarized below) we 
hypothesized that we might obtain better detection performance by suppressing the vertical component of 
EHD (and HOG) features.  This hypothesis formed the basis for a new feature we recently developed, 
referred to thus far as the “T-scan” feature.  The quality of the T-scan feature that differentiates it from 
features such as HOG and EHD is illustrated in Figure 2.  The main idea of T-scan is to focus on 
extracting horizontal gradient components from the GPR imagery rather than vertical components.   We 
hypothesized that suppressing this characteristic of these feature representations may improve detection 
performance, by emphasizing the differences in the shape content within threat and (difficult) non-threat 
GPR imagery, respectively.   

 

 
Figure 1: (a) Illustration of the pooling regions (tall red rectangles) used for the EHD feature.  A pooling region is a 
region over which shape information is summarized, often with a gradient histogram, in the source image.   (b)-(d) are 
illustrate the form of the resulting feature descriptor.  There are five different shape categories, which vary depending upon 
their angle, unless there is no dominant angle.  (b)-(d) are the EHD feature vectors obtained by averaging the feature 
vectors extracted over non-threats, easy threats, and difficult threats, respectively.  

 

 

  
Figure 2: Illustration of the conceptual difference between the EHD descriptor (or feature), and the T-Scan descriptor.  
The EHD descriptor (left) attempts to encode the shape information given by the dark red arrows.  T-Scan attempts to 
suppress this vertical shape information , and retain the horizontal shape component from the object in the GPR 
imagery. A hyperbolic shape is shown here for illustration, but in real-world GPR data, difficult threats do not always 
exhibit this canonical hyperbolic shape.   



We leveraged this idea in the development of the T-scan feature, which extracts shape information from 
GPR imagery constructed from GPR data collected at a fixed time.  We refer to this type of image as a T-
scan, and its vertical and horizontal axes are both spatial.  The T-scan relies on identifying and encoding 
shape information in T-scans, and thereby vertical shape content of the GPR data is ignored; only 
horizontally oriented shape information is encoded.  These shape features are extracted over many time 
slices, and subsequently averaged, in order to create a final T-scan feature.   This averaging results in a 
compact encoding of the total shape content within a volume of GPR data.  This feature extraction 
process is illustrated in  Figure 3.   

 
 

In order to test the validity of the T-scan feature, and thereby test our feature extraction hypothesis, we 
compared our T-scan algorithm (i.e., T-Scan feature with a support vector machine classifier) with several 
other recently developed algorithms proposed by our university collaborators.   This comparison was 
conducted as part of a process of evaluating algorithms for inclusion on the fielded GPR BTD system, 
and was moderated by the sponsoring agency (countermine).   The performance of the algorithms was 
compared using lane-based cross-validation on a dataset that included 120,000 𝑚" of inspected pathway, 
and 4552 threat encounters.  The results of this performance comparison on shown in Figure 4.  The T-
scan algorithm obtains the best overall performance (as measured by the area under the ROC curve).  The 
T-scan algorithm also ranks well (first or second) in performance regardless of the operating point.  In 
those cases where it ranks second in performance, it obtains similar performance to the best algorithm.   

 
Figure 3: Illustration of the T-Scan feature computation on a volume of GPR data (left).  Shape 
information is encoded in several T-scans extracted from the GPR volume (middle).  The shape encoding 
takes the form of a gradient histogram, and the histograms from each T-scan are averaged to obtain a 
final feature, or descriptor (right).   

 

 



 
 
Convolutional neural networks for recognition of buried threats in ground penetrating 
radar (GPR) data  
 As discussed, a large body of published research has focused on developing algorithms that automatically 
detect buried threats in GPR data.  Many of these algorithms operate on small images extracted from 
larger GPR volumes, or B-scans.  Perhaps as a result of this, many recent GPR detection algorithms have 
adopted techniques for image recognition from the computer vision literature. Some examples include 
Histogram of Oriented gradients (HOG), Edge Histogram Descriptors (EHD), and Fourier features.  

Recently, deep convolutional neural networks (CNNs) have achieved impressive performance for 
image recognition tasks on natural images. This suggests that CNNs may also yield improvements for 
threat recognition in GPR data. A CNN is comprised of a set of learned feature extractors connected with 
a neural network classifier. This is unlike traditional object detection pipelines which typically separate 
the extraction of a static set of features (e.g., HOG or EHD) and the classification of the data. The CNN is 
comprised of layers that are connected in a hierarchical fashion. The first layers typically consist of a 
combination of convolutional filters, spatial pooling layers, and normalizations. The final few layers form 
an artificial neural network classifier which ultimately returns a probability (or label) for each possible 
class of the input (e.g., threat or non-threat).  The CNN architecture is illustrated below. 
 

 
Figure 4: Lane-based cross-validation performance of several algorithms that were recently submitted for 

evaluation by the sponsoring agency.  

 

 



 
CNNs, however, exhibit several characteristics that make their application to GPR buried threat 

detection (BTD) difficult. To achieve good performance with a CNN, an appropriate network architecture 
has to be specified, which requires a large number of design decisions. This problem is exacerbated by the 
large amounts of data that are typically needed to train the network, and the resulting long training times. 
For GPR in particular, obtaining sufficient amounts of data to train a network could be prohibitive.  In our 
recent work we adapt several recent advances in the CNN literature to improve the performance of CNNs 
on GPR data.  In particular, we investigate the following modifications to CNNs:  

• We begin with a generic training procedure, where all the CNN parameters are initialized 
randomly, using the “Xavier-plus” initialization procedure.   

• Subsequently, we use grayscale imagery from the Cifar10 dataset to pre-train our CNN.  
• We then also consider using a data augmentation procedure to increase the amount of useful GPR 

training data.   
We conduct experiments in which we sequentially add one of these techniques into the CNN training 
procedure.   We conduct this experiment with three different CNN architectures, so that we can also 
explore which CNN architectural choices may yield the best results for GPR BTD.   The details of the 
three architectures we consider are presented in Table 1.   
 
 

 
Figure 5: Illustration of the broad layout of a convolutional neural network with standard components: convolutional 
layers with ReLU activation units (or nonlinearities), max pooling layers, and fully connected layers (i.e., a layer that 

is structured like a standard neural network classifier).    

 

 



 
In our experiments we used a large dataset of GPR data to measure the performance of each 

combination of (i) CNN architecture and (ii) training modification. Cross-validation is performed to 
ensure that the performance reported is valid. Here we split our 8 available lanes into 4 groups, and train 
on 6 lanes and test on the 2 lanes being held out.  This is repeated four times so that each lane is included 
in testing exactly once.  The results from this comparison are shown in Table 2 and are reported in terms 
of the area under the ROC curve (AUC) up to a false alarm rate (FAR) of 0.025	𝐹𝐴/𝑚2. A baseline for 
performance on this data is the previously published state-of-the-art algorithm using the HOG feature 
with the random forest classifier, which is shown in the final column of the table. Note that no pre-
training is possible with the random forest, but the AUC when classifying the augmented dataset is shown 
in the final column in the table.  

The results from this comparison suggest that the training procedures outlined here improve 
performance as they do in natural images. While initializing the network with Xavier-plus initialization 
achieves high detection performance, it is further benefited both by initializing the convolutional layers 
with pretrained layers and additionally by the dataset augmentation. Note that the HOG+RF did not 
improve with the augmented dataset.  All CNN algorithms substantially outperform the HOG-based 
algorithm, although we have recently discovered that the HOG feature may not constitute a strong 
baseline algorithm.  Future work will involve comparing the CNN algorithm to more effective 
conventional GPR BTD algorithms, such as those presented in the preceding section (e.g., those based on 
EHD or T-scan features).  
 

 

Table 1: Description of the 3 networks employed in this work. “conv3-16” refers to a convolutional layer with 16 
filters of 𝟑×𝟑	pixels. Maxpool(2x2, 2) refers to a pooling layer where the maximal filter response at each 2nd pixel 

is chosen within a window of 2×𝟐	pixels. Finally, the fully connected layers (FC-32) represent the number of 
neurons (e.g., 32) in that classification layer. Note that a ReLu unit is placed after each convolutional layer (not 

shown here). 

 
 

 

Table 2: Classification performance in terms of the average AUC when testing with the trained networks from 
epochs 𝟓−𝟏𝟎	is shown for the CNN architectures defined in Table 1 along with a baseline algorithm. These 

algorithms are compared using the training procedures outlined in Section IV. 

 
 

 



Feature learning methods for detecting buried threats in forward-looking ground 
penetrating radar (FLGPR) 

 
 Forward-looking ground penetrating radar (FLGPR) has recently been investigated as a remote 
sensing modality for buried target detection (e.g., landmines). In this context, raw FLGPR data is 
beamformed into images and then computerized algorithms are applied to automatically detect subsurface 
buried targets. Most existing algorithms are supervised, meaning they are trained to discriminate between 
labeled target and non-target imagery based on features extracted from the imagery. A large number of 
features have been proposed for this purpose, however thus far it has remained unclear which of them are 
most effective. The first part of our work provides a comprehensive comparison of detection performance 
using existing features on a large collection of FLGPR data. Fusion of the decisions resulting from 
processing each feature is also considered. The second part of our work investigated two modern feature 
learning approaches from the object recognition literature: the bag-of-visual-words (BOV), and the Fisher 
vector (FV) for FLGPR processing.   These approaches have achieved state-of-the-art performance on 
many image recognition tasks.   The FV and BOV feature learning approaches were operated on raw data 
and SIFT descriptors, yielding four new methods in total:  BOV(Raw), BOV(SIFT), FV(Raw), and 
FV(SIFT).  The results of comparing all the existing features, along with the proposed feature learning 
approaches, on all of the FLGPR polarities are shown in Figure 6.   The results indicate that the new 
feature learning approaches generally perform well, and the best performance is achieved by the 
FV(SIFT).  The results also indicate that overwhelmingly, the best performance was achieved on the HH 
polarity FLGPR images.   
 

 
Figure 6: Bar chart comparing the performance of the individual image features. The performance 
measure here is the partial area under the individual ROC curve (pAUC) up to a FAR of 0.02. This 

measurement is normalized by the possible ROC area, meaning that pAUC = 1 was computed on an ROC 
curve with perfect detection at a zero false alarm rate. Here notice the HH polarization for the FLGPR 

outperforms the other polarizations in all features. Also notice the feature learning techniques, specifically 
FV do improve slightly compared to previously existing features. 

 
 
In addition to comparing individual features, we also investigated decision fusion to further improve the 
features.  Decision fusion uses an additional classifier to combine the predictions of two (or more) 



classifiers in order to further improve performance.   This process essentially treats the outputs of 
classifiers as features that are used in a subsequent classifier.   Figure 7 provides a performance 
comparison for the prescreener, the best individual image feature set ( FV(SIFT) ), and the decision-level 
fusion result.  These results indicate that further performance improvement was achieved through fusion.  
All algorithm training, including learning the best fusion of the features, was perfor These approaches 
have achieved state-of-the-art performance on many image recognition tasks.   These approaches have 
achieved state-of-the-art performance on many image recognition tasks.    
 
 
 
 

 
Figure 7: Receiver operating characteristic curve (ROC) for algorithms run on the FLGPR. Performance 

measurement with the ROC describes the probability of detection (Pd) and false alarm rate, or FAR 
measured as number of false alarms per meter squared. Ideal performance would have Pd = 1 at zero 

FAR. The three results shown here are the prescreener anomaly detector, the best single image feature set, 
and the decision-level fusion result. 

 
 

 
 
 
 

 
 

 
 


